Home > Publications

Publications

[under construction]

  • 2020
  • 21. Anderson, C. et al. (2020), Soil Moisture and Hydrology Projections of the Permafrost Region - A Model Intercomparison, The Cryosphere, doi: 10.5194/tc-14-445-2020


  • 2019
  • 20. Chen, X.*, Z. Duan, L. R. Leung*, and M. Wigmosta (2019), A Framework to Delineate Precipitation-Runoff Regimes: Precipitation vs. Snowpack in the Western U.S., Geophys. Res. Lett. doi: 10.1029/2019GL085184 [EOS highlight]

    19. Perkins, W. A. et al. (2019), Parallel distributed hydrological model using global arrays, Env. Mod. Soft. doi: 10.1016/j.envsoft.2019.104533

    18. Chen, X.*, L. R. Leung*, M. Wigmosta, and M. Richmond (2019), Impact of Atmospheric Rivers on Surface Hydrological Processes in Western U.S. Watersheds, J. Geophys. Res.: Atmos. doi: 10.1029/2019JD030468 [Cover image] [EOS highlight] [Top download of JGR-A between 2018-2019]

    17. Chen, X. and F. Hossain (2019), Understanding future safety of dams in a changing climate, B. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-17-0150.1

    16. Eldardiry, H. et al. (2019), Atmospheric River-Induced Precipitation and Snowpack during the Western United States Cold Season, J. Hydrometeor. doi: 10.1175/JHM-D-18-0228.1


  • 2018
  • 15. Chen, X., L. R. Ruby, Y. Gao, Y. Liu, M. Wigmosta, and M. Richmond (2018), Predictability of Extreme Precipitation in Western U.S. Watersheds Based on Atmospheric River Occurrence, Intensity, and Duration, Geophys. Res. Lett. doi: 10.1029/2018GL079831

    14. Chen, X., and F. Hossain (2018), Understanding model-based probable maximum precipitation estimation as a function of location and season from atmospheric reanalysis, J. Hydrometeor. doi: 10.1175/JHM-D-17-0170.1


  • 2017
  • 13. Chen, X., F. Hossain, and L. R. Leung (2017), Probable maximum precipitation in the U.S. Pacific Northwest in a changing climate, Water Resour. Res. doi: 10.1002/2017WR021094

    12. Chen, X., F. Hossain, and L. R. Leung (2017), Establishing a numerical modeling framework for hydrologic engineering analyses of extreme storm events, J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0001523

    11. Xia, J., et al. (2017), Terrestrial ecosystem model performance in simulating net primary productivity and its vulnerability to climate change in the northern permafrost region, J. Geophys. Res.: Biogeosciences. doi: 10.1002/2016JG003384 [Top download of JGR-B between 2017-2018]


  • 2016
  • 10. Chen, X. and Hossain, F. (2016), Revisiting extreme storms of the past 100 years for future safety of large water management infrastructures, Earth's Future doi: 10.1002/2016EF000368

    9. Sikder, S., X. Chen, F. Hossain, J. Roberts, F. Robertson, C. Shum, and F. Turk (2016), Are General Circulation Models Ready for Operational Streamflow Forecasting for Water Management in the Ganges and Brahmaputra River Basins? J. Hydrometeor. doi: 10.1175/JHM-D-14-0099.1

    8. McGuire, A. D., et al. (2016), Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009, Global Biogeochem. Cycles doi: 10.1002/2016GB005405

    7. Wang, W., et al. (2016), Evaluation of air–soil temperature relationships simulated by land surface models during winter across the permafrost region, The Cryosphere doi: 10.5194/tc-10-1721-2016

    6. Peng, S., et al. (2016), Simulated high-latitude soil thermal dynamics during the past 4 decades, The Cryosphere doi: 10.5194/tc-10-179-2016

    5. Bonnema, M., et al. (2016), Understanding satellite-based monthly-to-seasonal reservoir outflow estimation as a function of hydrologic controls, Water Resour. Res. doi: 10.1002/2015WR017830


  • 2015
  • 4. Chen, X., Bohn, T. J., and Lettenmaier, D. P. (2015), Model estimates of climate controls on pan-Arctic wetland methane emissions, Biogeosciences doi: 10.5194/bg-12-6259-2015

    3. Rawlins, M. A., et al. (2015), Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia, Biogeosciences doi: 10.5194/bg-12-4385-2015

    2. Koven, C. D., et al. (2015), A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback, Phil. Trans. R. Soc. A doi: 10.1098/rsta.2014.0423


  • 2013
  • 1. Bohn, T. J., et al. (2013), Modeling the large-scale effects of surface moisture heterogeneity on wetland carbon fluxes in the West Siberian Lowland, Biogeosciences doi: 10.5194/bg-10-6559-2013




    In preparation/review

    1. Yan, H., N. Sun, X. Chen, and M. Wigmosta: Next-generation intensity-duration-frequency curves for climate-resilient infrastructure design: advances, opportunities, and design scaling. (under review)

    2. Dong, L., L. Leung, Y. Qian, Y. Zou, F. Song, and X. Chen: Meteorological environments associated with California wildfires and their role in wildfire changes during 1984-2017. (in revision)

    3. Wang, L., Y. Qian*, L. R. Leung, X. Chen*, et al.: Multiple metrics informed projections of future precipitation in China. (submitted)

    4. Chen, X.*, L. R. Leung*, Y. Gao, and Y. Liu: Response of U.S. west coast mountain snowpack to local sea surface temperautre perturbations: Insights from regional climate simulations and machine learning models. (submitted)



    Book Chapters

    3. Chen, X. (2020), Safety design of water infrastructures in a modern era, Resilience of Large Water Management Infrastructure: Solutions from Modern Atmospheric Science, Springer. doi: 10.1007/978-3-030-26432-1_8

    2. Chen, X., F. Hossain, and L. R. Leung (2020), Application of numerical atmospheric models, Resilience of Large Water Management Infrastructure: Solutions from Modern Atmospheric Science, Springer. doi:10.1007/978-3-030-26432-1_4

    1. Chen, X. and F. Hossain (2020), Infrastructure-relevant storms of the last century, Resilience of Large Water Management Infrastructure: Solutions from Modern Atmospheric Science, Springer. doi:10.1007/978-3-030-26432-1_5





    Non Peer-reviewed Articles

    1. Miao, Y. et al. (2016), Maximizing Hydropower Generation with Numerical Modeling of the Atmosphere, J. Hydrol. Eng. (forum article). doi: 10.1061/(ASCE)HE.1943-5584.0001405